1,483 research outputs found

    Recent advances in the evolution of interfaces: thermodynamics, upscaling, and universality

    Full text link
    We consider the evolution of interfaces in binary mixtures permeating strongly heterogeneous systems such as porous media. To this end, we first review available thermodynamic formulations for binary mixtures based on \emph{general reversible-irreversible couplings} and the associated mathematical attempts to formulate a \emph{non-equilibrium variational principle} in which these non-equilibrium couplings can be identified as minimizers. Based on this, we investigate two microscopic binary mixture formulations fully resolving heterogeneous/perforated domains: (a) a flux-driven immiscible fluid formulation without fluid flow; (b) a momentum-driven formulation for quasi-static and incompressible velocity fields. In both cases we state two novel, reliably upscaled equations for binary mixtures/multiphase fluids in strongly heterogeneous systems by systematically taking thermodynamic features such as free energies into account as well as the system's heterogeneity defined on the microscale such as geometry and materials (e.g. wetting properties). In the context of (a), we unravel a \emph{universality} with respect to the coarsening rate due to its independence of the system's heterogeneity, i.e. the well-known O(t1/3){\cal O}(t^{1/3})-behaviour for homogeneous systems holds also for perforated domains. Finally, the versatility of phase field equations and their \emph{thermodynamic foundation} relying on free energies, make the collected recent developments here highly promising for scientific, engineering and industrial applications for which we provide an example for lithium batteries

    New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    Full text link
    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a contrast compared to the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this special physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. This emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications

    Abstraction-Based Output-Feedback Control with State-Based Specifications

    Get PDF
    We consider abstraction-based design of output-feedback controllers for non-linear dynamical systems against specifications over state-based predicates in linear-time temporal logic (LTL). In this context, our contribution is two-fold: (I) we generalize feedback-refinement relations for abstraction-based output-feedback control to systems with arbitrary predicate and observation maps, and (II) we introduce a new algorithm for the synthesis of abstract output-feedback controllers w.r.t. LTL specifications over unobservable state-based predicates. Our abstraction-based output-feedback controller synthesis algorithm consists of two steps. First, we compute a finite state abstraction of the original system using existing techniques. This process typically leads to an abstract system with non-deterministic predicate and observation maps which are not necessarily related to each other. Second, we introduce an algorithm to compute an output-feedback controller for such abstract systems. Our algorithm is inspired by reactive synthesis under partial observation and utilizes bounded synthesis

    Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory

    Get PDF
    Brain-inspired hyperdimensional (HD) computing models neural activity patterns of the very size of the brain's circuits with points of a hyperdimensional space, that is, with hypervectors. Hypervectors are Ddimensional (pseudo)random vectors with independent and identically distributed (i.i.d.) components constituting ultra-wide holographic words: D = 10,000 bits, for instance. At its very core, HD computing manipulates a set of seed hypervectors to build composite hypervectors representing objects of interest. It demands memory optimizations with simple operations for an efficient hardware realization. In this article, we propose hardware techniques for optimizations of HD computing, in a synthesizable open-source VHDL library, to enable co-located implementation of both learning and classification tasks on only a small portion of Xilinx UltraScale FPGAs: (1)We propose simple logical operations to rematerialize the hypervectors on the fly rather than loading them from memory. These operations massively reduce the memory footprint by directly computing the composite hypervectors whose individual seed hypervectors do not need to be stored in memory. (2) Bundling a series of hypervectors over time requires a multibit counter per every hypervector component. We instead propose a binarized back-to-back bundling without requiring any counters. This truly enables onchip learning with minimal resources as every hypervector component remains binary over the course of training to avoid otherwise multibit components. (3) For every classification event, an associative memory is in charge of finding the closest match between a set of learned hypervectors and a query hypervector by using a distance metric. This operator is proportional to hypervector dimension (D), and hence may take O(D) cycles per classification event. Accordingly, we significantly improve the throughput of classification by proposing associative memories that steadily reduce the latency of classification to the extreme of a single cycle. (4) We perform a design space exploration incorporating the proposed techniques on FPGAs for a wearable biosignal processing application as a case study. Our techniques achieve up to 2.39 7 area saving, or 2,337 7 throughput improvement. The Pareto optimal HD architecture is mapped on only 18,340 configurable logic blocks (CLBs) to learn and classify five hand gestures using four electromyography sensors

    A new mode reduction strategy for the generalized Kuramoto–Sivashinsky equation

    Get PDF
    Consider the generalized Kuramoto–Sivashinsky (gKS) equation. It is a model prototype for a wide variety of physical systems, from flame-front propagation, and more general front propagation in reaction–diffusion systems, to interface motion of viscous film flows. Our aim is to develop a systematic and rigorous low-dimensional representation of the gKS equation. For this purpose, we approximate it by a renormalization group equation which is qualitatively characterized by rigorous error bounds. This formulation allows for a new stochastic mode reduction guaranteeing optimality in the sense of maximal information entropy. Herewith, noise is systematically added to the reduced gKS equation and gives a rigorous and analytical explanation for its origin. These new results would allow one to reliably perform low-dimensional numerical computations by accounting for the neglected degrees of freedom in a systematic way. Moreover, the presented reduction strategy might also be useful in other applications where classical mode reduction approaches fail or are too complicated to be implemented

    Design of the ECE diagnostic at Wendelstein 7-X

    Get PDF
    • …
    corecore